

Woodland Academy Trust Year 3 Calculation Document

Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real-life objects	Real-life objects	Mini-whiteboards	Mini-whiteboards	Mini-whiteboards	Mini-whiteboards	Mini-whiteboards
0 – 9 digit cards	0 – 9 digit cards	Place value cards			Protractors	Protractors
Number track/line to	Number line to 20 and	Number line to 100	Number line to 100	Number line including	Number line including	Number line including
20	50			negative numbers	negative numbers	negative numbers
Meter/Counting stick	Meter/Counting stick	Meter/Counting stick	Meter/Counting stick	Meter/Counting stick	Meter/Counting stick	Meter/Counting stick
<i>.</i>		Transparent rulers	Transparent rulers	Transparent rulers	Transparent rulers	Transparent rulers
Tens frame	Tens frame and hundred	Tens frame and	Tens frame and	Tens frame and	Tens frame and	Tens frame and
	square	hundred square	hundred square	hundred square	hundred square	hundred square
Building blocks	Place value charts – Tens	Place value charts –	Place value charts –	Place value charts –	Place value charts to a	Place value charts to 1
.	and ones	Ones to hundreds	Ones to Thousands	Ones to Ten thousands	million and three	million and three
					decimal places	decimal places
Containers that are	Containers that are		Fraction ba	ars, walls, circles (centralise	ed storage)	
different shapes and	different shapes and					
sizes	sizes		T	Т	Г	
Numicon shapes	Numicon shapes/ Dienes	Dienes	Dienes	Dienes	Dienes	Dienes
Sorting hoops	Sorting hoops	Sorting hoops	Place value counters	Place value counters	Place value counters	Place value counters
Big Dice	Place value arrow cards	Place value arrow cards	Place value arrow cards	Place value arrow cards	Place value arrow cards	Place value arrow card
	tens and ones	 tens and ones 	– H, T, O	– H, T, O		
Part-part-whole mat	Part-part-whole mat	Part-part-whole mat	Part-part-whole model	Part-part-whole model	Part-part-whole model	Part-part-whole mode
Transparent counters	Transparent counters	Transparent counters	Transparent counters	Transparent counters	Transparent counters	Transparent counters
Bar model with real-	Bar model pictorial	Bar model with	Plastic mirrors	Plastic mirrors	Plastic mirrors	Plastic mirrors
life objects	objects/ representative	counters /Dienes				
	objects e.g. counters	progressing to numbers				
Bead strings – ten	Bead strings – twenty/fifty	Bead strings - hundred	Bead strings - hundred	Bead strings - hundred	Bead strings - hundred	Bead strings - hundred
Dice	Dice	Dice	Dice	Dice	Dice	Dice
Cuisenaire rods	Cuisenaire rods	Cuisenaire rods	Cuisenaire rods	Cuisenaire rods	Cuisenaire rods	Cuisenaire rods
Double sided counters	Double sided counters	Double sided counters	Double sided counters	Double sided counters	Double sided counters	Double sided counters
Multilink – use one	Multilink – use one	Multilink – use one	Multilink – use one	Multilink – use one	Multilink – use one	Multilink – use one
colour to model an	colour to model an	colour to model an	colour to model an	colour to model an	colour to model an	colour to model an
amount	amount	amount	amount	amount	amount	amount
	Maths balances			Weighir	ng scales	
		Solid geor	metric shapes (centralised			
		Coins	and notes (centralised stor	rage)		
		Clock	(geared) (centralised store	age)		

Maths Working Wall (How we use displays to support children's understanding of mathematical concepts)					
Build it	Use a real-life representation of the concept, which children can see, touch and feel.	00000			
Draw it	Show a pictorial representation of the concept.				
Solve it	Show the mathematical representation of the concept	6 x 2 = 12 2 x 6 = 12 12 ÷ 2 = 6 12 ÷ 6 = 2 Factors of 12 are: 1, 2, 3, 4, 6 and 12			
Practise it	Encourage children to practice the concept. Interactive opportunity – ask children to respond to questions, encourage them to add what they know, leave homework for children to take to master the concept.	1 x 2 = 2 2 x 2 = 4 3 x 2 = 6 etc.			
Challenge it	Set a challenge to be solved. Interactive opportunity – leave real-life objects or manipulatives for children to use to help solve the challenge.	How many different ways can 12 eggs be arranged into arrays? What if you try 24 eggs?			
Say it	Use vocabulary related to the concept	Multiply, multiplication, repeated addition, array, divide, group, multiples, factors			

	Classroom visual prompts (How we represent maths to the children pictorially)					
Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Big focus 10	Big focus 20	Big focus 100				
Place Value Chart	Place Value Chart	Place Value Chart	Place Value Chart	Place Value Chart	Place Value Chart	Place Value Chart
10	20	100	Th- tenths	Tth- Hundredths	M- Thousandths	M- Thousandths
Numicon number line	Numicon number line	Fractions number line	Fractions number line	Fractions and decimals	Fractions, decimals	Fractions, decimals
with Numicon shapes	with Numicon shapes			number line	and percentages	and percentages
					number line	number line
Odd and even	Odd and even	Odd and even	Factors and multiples	Factors and multiples	Factors, prime and	Number properties
numbers	numbers	numbers			composite numbers	
	Number bonds to 10	Number bonds to 10	Number bonds to 10			
	Number bonds to 20	Multiples of 10	Multiples of 10			
		totalling 100	totalling 100			
0 – 20 number line /	0 -50 number line	0 – 100 number line	Number line to 100	Number line including	Number line including	Number line including
track				negative numbers	negative numbers	negative numbers
	100 square	100 square	100 square	100 square	100 square	100 square
Number names from 0	Number names of	Number names from 0	Number names from 0	Number names to	Number names to one	Number names to
- 10	multiples of 10	- 100	- 1000	hundred thousands	million	million
Real coins and	Real coins and	Real coins and	Real coins and	Real coins and	Real coins and	Real coins and
Large coins	Large coins	Large coins	Large coins	Large coins	Large coins	Large coins
Counting in 1s and 2s	2, 5 and 10	2, 4 and 8	3, 6 and 12	7, 9 and 11	All multiplication	All multiplication
	multiplication tables	multiplication tables	multiplication tables	multiplication tables	tables up to 12 x 12	tables up to 12 x 12
				All multiplication		
				tables up to 12 x 12		
Counting in 1s and 2s	2, 5 and 10	2, 4 and 8	3, 6 and 12	All multiplication table	All multiplication table	All multiplication table
multiplication table	multiplication table	multiplication table	multiplication table	patterns and	patterns and	patterns and
patterns and	patterns and	patterns and	patterns and	divisibility rules	divisibility rules	divisibility rules
divisibility rules and	divisibility rules and	divisibility rules and	divisibility rules and	Connections between	Connections between	Connections between
connections.	connections. Display	connections. Display	connections. Display	5/10, 3/6/12, 2/4/8	5/10, 3/6/12, 2/4/8	5/10, 3/6/12, 2/4/8
	after introducing the	after introducing the	after introducing the	Also focus on 1, 7, 9	Also focus on 1, 7, 9	Also focus on 1, 7, 9
	times tables to the	times tables to the	times tables to the	and 0 multiplication	and 0 multiplication	and 0 multiplication
	children.	children.	children.	table.	table. Square and cube	table. Square and cube
					numbers	numbers
			Roman numerals	Roman numerals	Roman numerals	Roman numerals
The = sign means	The = sign means	The = sign means	The = sign means	The = sign means	The = sign means	The = sign means
not an answer but is	not an answer but is	not an answer but is	not an answer but is	not an answer but is	not an answer but is	not an answer but is
equivalent to	equivalent to	equivalent to	equivalent to	equivalent to	equivalent to	equivalent to
2D and 3D shapes	2D and 3D shapes	2D and 3D shapes	2D and 3D shapes	2D and 3D shapes	2D and 3D shapes	2D and 3D shapes

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Combining two parts to make a whole: part whole model.	Adding three single digits.	Column method- regrouping.	Column method- regrouping.	Column method- regrouping.	Column method- regrouping.
Addition	Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Use of base 10 to combine two numbers.	Using place value counters (up to 3 digits).	(up to 4 digits)	Use of place value counters for adding decimals.	Abstract methods. Place value counters to be used for adding decimal numbers.
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. (up to 3 digits using place value counters)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.
	Recognising and	Arrays- showing	Arrays	Column	Column	'olumn

Multiplication	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays 2d × 1d using base 10	Column multiplication- introduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit-concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

	Progression in the te	eaching of place value	
Foundation	Year 1	Year 2	Year 3 onwards
Understanding ten	Understanding numbers up to 20	Understanding numbers up to one hundred	Understanding numbers up to one thousand
A TENS FRAME is a simple maths tool that helps children: • Keep track of counting • See number relationships • Learn addition to 10 • Understand place value Use tens frames flash cards daily to ensure children recognise amounts. Use empty tens frames to fill with counters to enable children to understand number relationships. Either fill the tens frame in pairs or in rows. In rows shows 5 as a benchmark. Children can easily see more than 5 or less. Setting the counters in pairs, naturally allows the children to see addition concepts. Include other visual images such as dice, cards, dominoes etc.	'Ten' is the building block of our Base 10 numeration system. Young children can usually 'read' two-digit numbers long before they understand the effect the placement of each digit has on its numerical value. A child might be able to correctly read 62 as sixty two and 26 as twenty-six, and even know which number is larger, without understanding why the numbers are of differing values. Ten-frames can provide a first step into understanding two-digit numbers simply by the introduction of a second frame. Placing the second frame to the right of the first frame, and later introducing numeral cards, will further assist the development of place value understanding.	Continue developing place value through the use of tens frames. 10 10 1 1 1 1 1	Continue developing place value through the use of manipulatives including recognising 416 as 41 tens and 6 ones which is equivalent to 416 ones which is equivalent to four hundreds and one ten and six ones 4 1 6 100 10 11 100 1

Progression in the teaching of place value Year 4 Year 5 Year 6 Understanding numbers up to ten thousand Understanding numbers up to one million including Understanding numbers beyond one million including decimals decimals Continue developing place value through the use Continue developing place value through the use Continue developing place value through the use of of manipulatives. of manipulatives. manipulatives. Place value arrow cards • Place value arrow cards Place value arrow cards • Place value counters (including decimal Place value counters • Place value counters (including decimals Dienes blocks counters) counters) Place value charts Dienes blocks Dienes blocks Place value charts Place value charts hundreds tens ones THOUSANDS MILLIONS ONES 0000 thousands hundreds · 3 0 They need to understand that there are no ten They need to understand that there are no ten thousands in this number. The value of the digit 9 is Continue developing place value through the use thousands in this number. The value of the digit 9 nine thousand but there are 745309 thousands in of manipulatives including recognising the is nine thousand but there are three hundred and this number. number above as one thousand plus two nine thousands in this number. They need to be able to recognise the value of the hundred plus four tens plus seven ones is They need to be able to recognise the value of digit and the number and know that these are equivalent to twelve hundred plus 47 ones etc. the digit and the number and know that these different. They also need to know how many The children must also be able to identify that are different. tenths, hundredths and thousandths there are in this number is also 12,470 tenths They also need to know how many tenths and this number 7453092810 tenths and 74530928100

hundredths are in this number 3092810 tenths

and 30928100 hundredths in this number.

hundredths and 745309281000 thousandths in this

number.

Y3 Addition & Subtraction

Strategy & guidance CPA Add and subtract numbers mentally, It is important to model the mental strategy including: using concrete manipulatives in the first instance and pupils should be able to a three-digit number and ones; exemplify their own strategies using a three-digit number and tens; manipulatives if required, with numbers appropriate to the unit they are working on a three-digit number and hundreds (3-digit numbers in Units 1 & 4; 4-digit Pupils learn that this is an appropriate strategy when numbers in Unit 13). However, pupils they are able to use known and derived number facts should be encouraged to use known facts to or other mental strategies to complete mental derive answers, rather than relying on calculations with accuracy. counting manipulatives or images. To begin with, some pupils will prefer to use this No regrouping strategy only when there is no need to regroup, using number facts within 10 and derivations. More 345 + 30274 - 50 confident pupils might choose from a range of mental strategies that avoid written algorithms, including 1128 + 3001312 - 300 (but not exhaustively): 326 + 342856 - 724 known number facts within 20, derived number facts, I know 4 + 3 = 7, so 4 tens plus 3 'Make ten', tens is equal to 7 round and adjust tens. 345 + 30 = 375. See Year 2 guidance for exemplification of these – the use of concrete manipulatives other than Dienes With some regrouping blocks is important in reinforcing the use of these strategies.

232 - 5
455 - 216
130 - 40
2382 - 500

It is important that pupils are given plenty of (scaffolded) practice at choosing their own strategies to complete calculations efficiently and accurately. Explicit links need to be made between familiar number facts and the calculations that they can be useful for and pupils need to be encouraged to aim for efficiency.

Strategy & guidance

Written column method for calculations that require regrouping with up to 4-digits

Dienes blocks should be used alongside the pictorial representations during direct teaching and can be used by pupils both for support and challenge. Place value counters can also be introduced at this stage.

This work revises and reinforces ideas from Key
Stage 1, including the focus on place value – see Year
2 exemplification.

Direct teaching of the columnar method should require at least one element of regrouping, so that pupils are clear about when it is most useful to use it. Asking them 'Can you think of a more efficient method?' will challenge them to apply their number sense / number facts to use efficient mental methods where possible.

As in Year 2, pupils should be given plenty of practice with calculations that require multiple separate instances of regrouping. In Year 3 they become more familiar with calculations that require 'regrouping to regroup'. Understanding must be secured through the considered use of manipulatives and images, combined with careful use of language.

Pupils should be challenged as to whether this is the most efficient method, considering whether mental methods (such as counting on, using known number facts, round and adjust etc.) may be likelier to produce an accurate solution.

Pupils requiring support might develop their confidence in the written method using numbers that require no regrouping.

See Unit materials for extra guidance on this strategy.

CPA

As for the mental strategies, pupils should be exposed to concrete manipulatives modelling the written calculations and should be able to represent their written work pictorially or with concrete manipulatives when required.

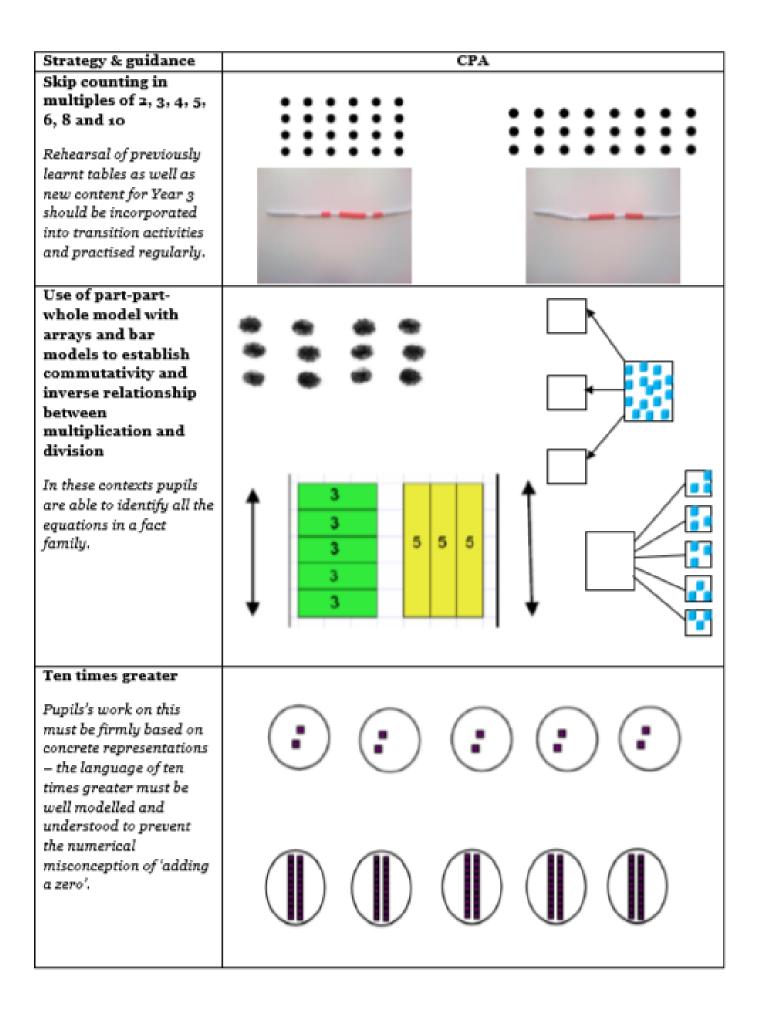
Again, they should be encouraged to calculate with known and derived facts and should not rely on counting images or manipulatives.

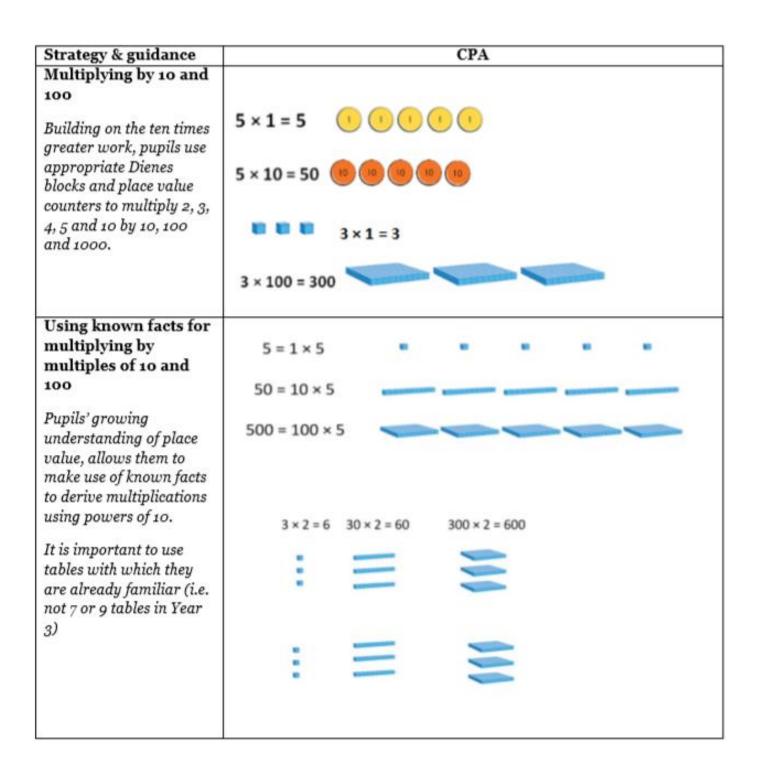
5 + 6 = 11 so I will have 11 ones which I regroup for 1 ten and 1 one.

Regrouping (including multiple separate instances)

672 + 136	734 – 82
468 + 67	831 - 76
275 + 386	435 – 188


'Regrouping to regroup'

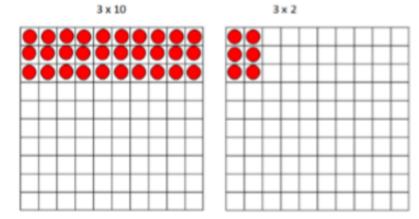

204 - 137


1035 - 851

CPA
142 + 100 = 242

Y3 Multiplication

Strategy & guidance


Multiplication of 2digit numbers with partitioning (no regrouping)

Children should always consider whether partitioning is the best strategy – if it is possible to use strategies such as doubling (some may use doubling twice for ×4), they need to choose the most efficient strategy.

Children may wish to make jottings, including a full grid as exemplified here - but grid method is not a formal method and its only purpose is to record mental calculations. This supports the development of the necessary mental calculating skills but does not hinder the introduction of formal written methods in Year 4. Concrete manipulatives are essential to develop understanding.

CPA

3 x 12 12 = 10 + 2

Now add the total number of tens and ones

×	10	2
3	Ш	:::

×	10	2
3	30	6

$$3 \times 12 = 36$$

CPA Strategy & guidance Multiplication of 2digit numbers with 4 10 4 10 × × partitioning (regrouping) 3 30 12 3 Using concrete manipulatives and later moving to using images that represent them, supports pupils' early 5 40 × understanding, leading towards formal written methods in Year 4. 3 Once again, this is a mental strategy, which they may choose to support with informal jottings, including a full grid, as exemplified here.

Pupils must be

of their known

than counting manipulatives.

encouraged to make use

multiplication facts and their knowledge of place value to calculate, rather

Y3 Division

Strategy & Guidance CPA Dividing multiples of 10, 100 and 1000 by tens ones hundreds 10, 100 and 1000 using scaling down Pupils use the strategy of 'scaling down', representing numbers $3 \times 10 = 30$ with concrete manipulatives and making the value ten times smaller. $30 \div 10 = 3$ Dividing multiples of 10, 100 and 1000 by 10, 100 and 1000 500 ÷ 100 = using grouping My whole is 500 and the value of the Pupils divide by 10, 100 equal parts is 100. How many parts are 0 0 and 1000 by making there? groups of the divisor.